Tree growth (3PG model) and C dynamics (CBM–CFS3 model) modelling approaches were used to determine the total ecosystem C (TEC) stocks and C stocks additions in Manitoba maple shelterbelts in Saskatchewan. Our growth curves and biomass prediction values (Figure 1) were limited to age 60 years. All older–than–60 years shelterbelts were assigned a conservative, 60–year biomass estimate. Differences in climatic and soil conditions caused the wide ranges of Manitoba maple growth in shelterbelts: mean aboveground biomass (stems, branches, bark), at age 60 years, was 118–193 Mg Km\(^{-1}\), diameter at breast height (DBH) was 34–44 cm, and height was 9–11 m (Figure 1). The growth curves were used in the CBM–CFS3 model to produce an inventory of the carbon stocks (Table 1) in all Manitoba maple shelterbelts planted from 1925 to 2009.

Carbon Stocks Inventory

- TEC stocks and C stocks additions in Manitoba maple shelterbelts were 0.36 and 0.21 Tg (1 Tg = 1 million Mg), respectively. About 67% of these C stocks additions (0.14 Tg) occurred since 1990, regardless of tree planting period, and have an estimated value of $7.8 million, at $15 per Mg CO\(_2\)-eq (Table 1).
- 14% (375 Km) of all Manitoba maple shelterbelts (2,646 Km) were planted in the last 25 years.
- For six common shelterbelt species in Saskatchewan, the total length of Manitoba maple shelterbelts is 5.2%, and the TEC stocks stored in them is 3.4%, of the cumulative length and TEC stocks, respectively.
- Although 86% are in the Dark Brown soil zone (Table 1), Manitoba maple shelterbelts represent about 5%, or greater, spatial occurrence in the Black, Dark Gray and Gray soil zones. In the Gray soil zone, they represent up to 16% of the cumulative TEC stocks in some clusters (Figure 2).

![Figure 1. Manitoba maple growth in shelterbelts: biomass, DBH, and height.](image-url)
AGGP

AGROFORESTRY

RELATIVE OCCURRENCE AND C SEQUESTRATION RATE

- Manitoba maple growth and its C sequestration potential make it a valuable species for shelterbelt establishment (Figure 2).
- The average C sequestration rate was 2.39–2.60 Mg C Km\(^{-1}\) yr\(^{-1}\), the highest being in the Gray soil zone.
- Manitoba maple relative spatial occurrence and estimated rate of C sequestration (Figure 2) could be used as a guideline for identifying best locations for future planting.
- Best predicted areas for future planting are the Black and Gray soil zones, where on the majority of the clusters, the C sequestration rate is estimated >2.48 Mg C Km\(^{-1}\) yr\(^{-1}\), ranging 2.01–3.32 Mg C Km\(^{-1}\) yr\(^{-1}\).
- Planting Manitoba maple shelterbelt trees on agricultural landscapes is an important strategy for mitigating greenhouse gasses.

FURTHER READING

AGGP Fact Sheet(s): SASK–1, SASK–2, SASK–6, SASK–10

CONTACT FOR MORE INFORMATION: SASKAGROFORESTRY.CA/

ACKNOWLEDGEMENTS & COPYRIGHT

This research was done by a team of collaborators from the University of Saskatchewan, University of Regina, and Agriculture and Agri-Food Canada (AAFC), under the leadership of Dr. Ken Van Rees of the University of Saskatchewan. Funding was provided by Agriculture and Agri-Food Canada (AAFC)’s Agricultural Greenhouse Gases Program (AGGP). We thank the AAFC Agroforestry Development Centre at Indian Head, SK for providing the shelterbelt tree data. This fact sheet was completed in May 2016.